ПРИЛОЖЕНИЯ Приложение 1. Живое дерево: Осень — зима — весна Глядя на сбросившее листву дерево, многим из нас кажется, что жизнь в нем остановилась до следующей весны. Кое-кто ничуть не сомневается в этом, однако не все так просто и однозначно в тех процессах, которые происходят в таком, казалось бы, известном нам растении, как дерево… Ученые многих стран, изучающие жизнедеятельность (физиологию) древесных растений, пока не пришли к единому мнению относительно того, как именно древесный организм реагирует на снижение температуры окружающей среды, какие процессы при этом и в какой последовательности происходят в капиллярах и живых клетках древесины, почему и при каких условиях происходит полное прекращение жизнедеятельности (вымерзание) растений. При глубокой проработке этого вопроса возникает множество частных проблем. Вот только один пример — вода. Уж, кажется, что может быть проще! У многих из нас еще со школьных лет прочно установился стереотип о том, что вода замерзает при температуре 0 °С. Однако оказывается, что самая обычная вода, находящаяся в стеклянной трубочке с микрокапилляром в 0,1 мм, замерзает при —20 °С (Чудинов Б.С., 1984). В то же время в древесном капилляре такого же диаметра она замерзает при более высокой температуре. Приемлемого объяснения этому факту пока никто не дал. Более того, имеется информация о том, что при определенных условиях обычная вода может оставаться в жидком состоянии (так называемая переохлажденная вода) при температурах вплоть до -70 °С (Веретенников А.В., 1987). Существует также и ряд других проблем, по которым пока нет однозначного понимания. По всем этим причинам предлагаемая модель функционирования живого дерева лиственной породы в период времени осень — зима — весна не может претендовать на бесспорность. Однако, с учетом всей имеющейся информации по этому вопросу на сегодняшний день, эта модель представляется наиболее вероятной. ♦ ♦ ♦ Процесс подготовки дерева к зиме начинается задолго до ее наступления. Считается, что механизм предварительной подготовки дерева к зиме включается с началом сокращения светового дня, когда в дереве начинают приостанавливаться процессы роста. Затем в конце лета дерево вступает в состояние так называемого внутреннего покоя, при котором в древесном организме резко снижается интенсивность обмена веществ. При дальнейшем устойчивом снижении температуры воздуха ниже +10 °С, чаще всего это происходит в августе, дерево переходит в состояние глубокого (органического) покоя, который для большинства древесных растений средней полосы длится до ноября — декабря (Сергеев Л.И., 1964). По другому источнику — до ноября — января (Лесная энциклопедия, 1986). Осенью с наступлением холодов обменные процессы в дереве продолжают замедляться. Уменьшаются в связи с этим и возможности проводящей системы дерева па доставке влаги и питательных веществ к ветвям (особенно тонким) и листьям. Однако транспирация (испарение) влаги в атмосферу не прекращается, и для того чтобы уменьшить транспирацию и привести ее хоть в какое-то соответствие с возможностями по доставке влаги, дерево сбрасывает листву. Таким образом, дерево защищает себя от зимнего иссушения. В процессе характерных для осени многократных перепадов температур происходит так называемое закаливание дерева. В ходе этого периода внутри живых клеток дерева начинают накапливаться защитные вещества в виде растворов Сахаров и некоторых других веществ. Эти защитные вещества создают в дереве такие условия, при которых сильно снижается вероятность образования льда внутри живых клеток. Но даже у наиболее морозостойких деревьев вся имеющаяся в тканях вода не может оставаться незамерзающей. Какая-то ее часть при длительном воздействии низких отрицательных температур все же будет замерзать. Самое главное, чтобы этот процесс происходил не в протопласте (оболочке) живой клетки, а в межклеточном пространстве, тогда протопласт будет подвергаться меньшей опасности получить механические повреждения. В лабораторных условиях при постепенном ступенчатом понижении температуры удалось добиться чрезвычайно высокой морозоустойчивости дерева. Так, в одном из опытов И.И. Туманова ветка яблони, помещенная в переносную морозильную камеру с температурой —153 °С, весной цвела и даже плодоносила (по А.А. Веретенникову, 1987). При дальнейшем понижении внешних температур отток воды в межклеточные пространства увеличивается; в этот момент времени там будет находиться ровно столько воды, сколько ее сможет кристаллизоваться при имеющейся в данный момент температуре. Процесс закаливания дерева и накапливания воды в межклетниках происходит постепенно и, в зависимости от характера наступающей зимы, может занимать продолжительный период времени. В ходе этого периода сокодвижение в дереве еще происходит, хотя и в замедленном темпе. С переходом внешних температур в область устойчивых отрицательных значений корнеобитаемый слой почвы постепенно промерзает, что приводит к уменьшению поглощаемой корнями влаги. При дальнейшем охлаждении древесины имеющаяся в ней вода после небольшого переохлаждения начинает замерзать вначале в наиболее крупных капиллярах. Но свойства воды таковы, что процесс ее кристаллизации сопровождается выделением теплоты. Так, при замерзании одного грамма воды выделяется 335 Дж (80 кал) тепла. По этой причине температура древесины, в капиллярах которой начинает замерзать вода, повышается до 0 °С и стабилизируется на этом уровне. Объясняется данное явление тем, что в лед за единицу времени может превратиться ровно столько воды, сколько необходимо для того, чтобы выделяющаяся при этом теплота компенсировала отводящуюся за это же время теплоту при охлаждении древесины внешним воздухом. Температура в отдельных точках внутри древесины начнет опускаться ниже 0 °С лишь после того, как вся свободная вода около них замерзнет. Вода в капиллярах дерева (так называемая свободная вода) начинает замерзать только при охлаждении древесины до —2…5 °С (Чудинов Б.С., 1984). Другой источник утверждает, что в стволах древесных пород образование льда происходит при —2…4 °С, а при сухой атмосфере — при -8… 11 °С (Самыгин Г.А., 1974). Однако с началом замерзания в стволе кристаллизуется только часть воды, а часть этой свободной (не связанной в клетках) воды в межклеточных пространствах остается в жидком состоянии и сокодвижение, хотя и очень замедленно, продолжается до еще более низких температур. Способность воды (пасоки) сохраняться в переохлажденном жидком состоянии в тканях древесины, наличие в них растворов органических и минеральных веществ, способствующих сохранению жидкого состояния воды (наподобие антифриза), своевременная «закалка» дерева все увеличивающимися перепадами температур предохраняют дерево от гибели даже при трескучих морозах. Что же касается связанной в клетках влаги, то она начинает замерзать при ее охлаждении до —5…—16 °С (Самыгин Г.А., 1974), до -10…15 °С (Чудинов Б.С., 1984). Принимая во внимание значительную инерционность температурного поля в древесных стволах, особенно большого диаметра, это происходит, видимо, при понижении температуры в атмосфере до —15…—20 °С (Чудинов Б.С., 1984). Количество кристаллизуемой в межклетниках воды постепенно увеличивается, и в случае наступления продолжительного периода низких отрицательных температур в декабре — январе дерево переходит в состояние вынужденного (экзогенного) покоя. Это состояние характеризуется наличием в межклеточных пространствах заболони определенного количества замерзшей воды, почти полным отсутствием сокодвижения в стволе и ветвях, продолжением кутикулярной (покровной) транспирации и, как следствие, постоянным дефицитом влаги в живых тканях дерева. Дыхание живых клеток, испытывающих дефицит влаги, продолжается постоянно, хотя и с резко уменьшившейся интенсивностью. Дерево снизило все свои жизнеобеспечивающие функции до минимально возможного уровня, который, однако, достаточен для возобновления этих функций с наступлением временного или постоянного потепления. Подсушенные живые клетки готовы в любой момент принять недостающую воду, находящуюся в межклеточных пространствах в замерзшем и переохлажденном состоянии, как только она нагреется и перейдет в жидкое агрегатное состояние. Параллельно с описанными выше процессами в это же время в дереве происходит и другой процесс. Как показывают исследования (Крамер П., Козловский Т., 1983), с началом перехода дерева в состояние внутреннего покоя в конце лета начинает изменяться концентрация газов в стволе дерева: концентрация кислорода начинает повышаться, а углекислого газа — уменьшаться. К январю — февралю кислород уже может занимать более 15% общего объема ствола (сосна) и до 30% у тополя, в то время как углекислый газ и у сосны и у тополя занимает не более 5% объема ствола. Эти изменения концентраций газов вызываются изменениями обменных процессов, которые в свою очередь определяются понижением среднесуточных температур. При этом четко прослеживается обратная зависимость между значениями внешних температур и концентрациями О2 и прямая зависимость между температурами и концентрациями СО2. Наличие этого процесса означает, что объем ствола, например, тополя в зимнее время занят в таком соотношении: около 30% древесиной, около 30% — свободной и связанной водой в разных агрегатных состояниях и более чем на 40% — газом (О2+ СО2) (Крамер П., Козловский Т., 1983). Газ в древесине заполняет те полости и пустоты, которые не заняты водой. Если бы газ находился в капиллярах вместе с водой и разрывал непрерывные водные потоки, то это сделало бы невозможным передвижение водных потоков, ибо обязательным условием для передвижения жидкости в капилляре является непрерывность и неразрывность водного потока. Наличие в стволе зимнего дерева большого количества пустот, составляющих до 40% общего объема ствола и занятых газом, придает древесине хорошие теплоизолирующие свойства. Что же касается возможности пополнения запасов воды мелкими ветвями в холодное время года (а именно они испытывают в это время наибольший дефицит влаги), то И.И. Туманов (1955) установил следующее. Срезанные побеги, хранившиеся зимой на открытом месте, содержат меньше воды, чем побеги, находившиеся в тех же условиях на растениях. Объясняется это тем, что даже в холодные месяцы происходит пополнение влаги в ветвях за счет притока воды из других частей дерева, где имеются запасы, влаги. Такое передвижение воды может быть и при слабых морозах, если в древесном организме остается еще достаточное количество воды в жидкой фазе. Пополнение водного дефицита возможно даже при значительных морозах. Оно наблюдается при солнечной погоде, когда надземные части могут заметно прогреваться по сравнению с окружающим воздухом. Таким путем тонкие веточки, имеющие большую поверхность испарения, периодически пополняют израсходованную воду за счет ее запасов в более массивных частях растений. Если длительное время из-за сильных морозов этого происходить не будет, то ветви будут повреждаться и в дальнейшем отмирать. Основной, причиной повреждения древесины при замерзании растений считается обезвоживание цитоплазмы клетки, вызванное образованием льда в межклетниках. Все более и более оттягивая воду из цитоплазмы, лед увеличивается в объеме и начинает чисто механически повреждать поверхностные слои обезвоженной цитоплазмы. Ю.З. Кулагин (1969) также указывает на то, что во время зимних оттепелей и слабых (менее 5—7 °С) морозов в побеги поступает вода из толстых скелетных ветвей и ствола, которая ликвидирует опасный водный дефицит, вызванный зимним иссушением. Однако при наступлении продолжительного периода низких отрицательных температур (—15 —20 °С) дерево переходит в состояние вынужденного покоя, при котором сокодвижение в дереве будет в значительной мере замедленно, а в отдельные периоды очень низких температур и вовсе прекращаться. Ранней весной с началом потепления при прогреве ствола до положительных температур возобновляется интенсивное сокодвижение, в первую очередь за счет запасов свободной влаги, хранящейся зимой в межклеточных пространствах. По мере прогрева почвы и корнеобитаемого слоя возобновляется поступление влаги от корней, включается механизм активного поглощения воды древесным организмом. Движущей силой активного поглощения является так называемое корневое давление. Корневая система при этом превращается в своеобразный насос, который гонит влагу по стволу. Механизм активного поглощения действует только ранней весной. В дальнейшем дерево переходит на пассивное поглощение влаги за счет кутикулярной (с поверхности дерева), а затем — и листовой транспирации, которая теперь будет основной движущей силой, вызывающей перемещение влаги в проводящей системе дерева. Приложение 2. Зимний анабиоз пчел: миф или реальность? В последние годы в пчеловодной литературе и периодических изданиях все чаще появляется информация о таких явлениях, как анабиоз, криптобиоз, диапауза, спячка, применительно к состоянию пчел во время зимовки. Одни авторы утверждают, что пчелы зимой могут находиться в том или ином из перечисленных состояний, и даже предлагают рекомендации по использованию этих состояний для зимовки. Другие отрицают всю эту «ересь» вместе с рекомендациями и продолжают использовать традиционные способы зимовки. Кто же из них прав? В общей постановке этот вопрос интересовал меня давно, однако ответить на него самому меня подтолкнула письменная дискуссия с пасечником из Черкасской области В.А. Возным, автором очень оригинального изобретения — шестигранного улья. Мне кажется, что результаты этой работы могут быть интересны не только мне, но и многим пчеловодам, которые желают знать о пчеле больше, чем написано в учебниках. Прежде чем приступить к непосредственному анализу, хочу уточнить основные термины и понятия, относящиеся к данной проблеме. В биологии насекомых современная наука выделяет два принципиально различных состояния: 1. Активная жизнедеятельность (биоз). 2. Покой. Активная жизнедеятельность сопровождается передвижением, питанием, размножением, развитием и расселением организмов. Для состояния покоя характерно подавление или отсутствие передвижения и питания, а также торможения в разной мере газообмена, пищеварения и развития организмов. Применительно к пчелам активная жизнедеятельность характерна в основном для теплого периода года, когда пчелы имеют возможность вылетать из улья, а покой характерен для холодного периода года, когда пчелы постоянно находятся в своем жилище. В контексте рассматриваемого вопроса нас будет интересовать более подробно состояние покоя. Многообразие проявлений состояния покоя у насекомых по их интенсивности, продолжительности, физиологическим и биохимическим особенностям и ряду других характеристик привело к множественности и нечеткости терминов, понятий и критериев, используемых разными авторами при описании конкретных случаев покоя и проведении их классификации. Возникшие в этой связи трудности усугубляются тем, что на состояние физиологического покоя, возникающего и поддерживаемого внутренними (эндогенными) механизмами, часто накладывается простое физическое оцепенение, происходящее под прямым давлением экстремальных факторов внешней среды, т. е. внешних (экзогенных) механизмов, имеющих совсем иную природу. Эти «накладки» длительное время не позволяли ученым выработать четкую классификацию состояний покоя у насекомых. И хотя состояния покоя некоторых насекомых (медоносных пчел, в частности) и сегодня не полностью вписывается в существующую классификацию, однако эта классификация реально существует, и ею широко пользуются. Особым состоянием животных, и насекомых в том числе, является состояние анабиоза, под которым понимается обратимо остановленная жизнь такими физическими факторами, как глубокое охлаждение, глубокое обезвоживание, или их сочетания. При анабиозе все жизненные процессы временно прекращаются или настолько замедленны, что отсутствуют все видимые проявления жизни (БСЭ, Т. 1). Учитывая все сказанное, будем считать, что насекомые могут находиться в трех состояниях: активной жизнедеятельности, покоя и анабиоза (рис. П.1). В свою очередь состояние покоя в соответствии с современной классификацией (Ушатинская Р.С., 1990) делится на две группы: вынужденный покой и физиологический покой (рис. П.2). Рассмотрим более подробно характеристику этих групп, обратив особое внимание на медоносную пчелу. Вынужденный (экзогенный) покой проявляется в виде оцепенения или гипобиоза. Характеризуется приостановкой жизнедеятельности пчел, сопровождающейся потерей движения и понижением обмена веществ, происходящей под непосредственным воздействием неблагоприятных для жизни внешних условий, резко отклоняющихся от обычной, освоенной нормы (низкая температура, избыток углекислого газа и т.д.). При возвращении обычных условий жизни оцепенение вскоре сменяется активной жизнедеятельностью. Состояние оцепенения может повторяться у одной и той же особи неоднократно через разные промежутки времени без видимого отрицательного эффекта. Вынужденный покой наступает внезапно при любом физиологическом состоянии организма, а при его окончании не требует восстановительного периода, если оцепенение не было слишком длительным и не сопровождалось патологическими изменениями. Холодовое оцепенение пчел стимулирует длительное пребывание отдельных особей при температуре +10 °С. Но в этом случае оцепенение бывает неглубоким. С понижением температуры глубина оцепенения возрастает. Пчелы, оказавшиеся при температуре, вызывающей холодовое оцепенение, некоторое время сопротивляются этому за счет повышения двигательной активности. Продолжительность жизни пчел в состоянии холодового оцепенения связана с температурой, вызывающей это состояние. С ее понижением увеличивается скорость гибели отдельных пчел. Так, при +10 °С пчелы погибают через 50-90 часов, а при 0 °С — через 48—60 часов. Таким образом, холодовое оцепенение пчел затормаживает их двигательные функции и замедляет метаболические (обменные) процессы в организме. Такие пчелы не могут активизироваться, находясь при температуре, вызвавшей это состояние. Для активизации им требуется более высокая температура. Холодовое оцепенение можно рассматривать как одну из форм гипобиоза (пониженной жизнедеятельности), развитию которой благоприятствовал отбор на экономное расходование индивидуального энергетического ресурса. Благодаря этому приспособлению сохраняется жизнеспособность отдельной особи при ее кратковременном охлаждении, когда увеличение теплопродукции в ответ на это охлаждение биологически нецелесообразно. Е.К. Еськов (1983) считает, что холодовое оцепенение не имеет для пчел приспособительного значения, обеспечивающего им длительное выживание при экономном расходовании энергетического ресурса. Этим холодовое оцепенение отличается от диапаузы у одиночно живущих насекомых, которая характеризуется резким снижением обмена веществ и приостановкой развития с целью переживания неблагоприятных условий. Так как отсутствие диапаузы свойственно видам, зимующим в условиях, защищенных от резкого и глубокого охлаждения, гипобиоз в виде оцепенения с успехом выполняет холодозащитную роль, сохраняя в качестве преимущества перед диапаузой способность к быстрому восстановлению активной жизнедеятельности без прохождения длительного во времени реставрационного периода, который обязателен для диапаузы. Абсолютное большинство одиночно живущих насекомых являются холоднокровными (пойкилотермными) организмами. Такими же свойствами характеризуется и отдельно взятая пчела. Однако клуб пчел, в составе которого эта пчела находится во время зимовки, обладает в отношении теплообразования и терморегуляции некоторыми особенностями, характерными для животных с постоянной температурой тела (гомойотермных). Поэтому приспособительные реакции пчел в процессе эволюции изменялись в направлении развития механизмов регулирования внутригнездового микроклимата. Физиологический (эндогенный) покой — состояние, сформировавшееся как комплекс физиологических реакций организма на периодически повторяющиеся неблагоприятные для активной жизнедеятельности условия внешней среды. Это состояние формируется заблаговременно и требует длительного периода выхода при его окончании. Физиологический покой включает в себя четыре типа покоя, которые по глубине и продолжительности составляют спектр от наиболее кратковременного и поверхностного до наиболее глубокого и продолжительного. 1. Сон — наиболее общее, широко распространенное в органическом мире явление расслабления физиологического напряжения работы организма. 2. Олигопауза — состояние относительно неглубокого покоя, промежуточного между сном и диапаузой. 3. Диапауза — состояние глубокого продолжительного покоя. 4. Супердиапауза — затяжная диапауза продолжительностью более года.
У нас Вы можете купить ульи Дадана или Рута