Конструкция обогревателя для помещения Основные требования к обогревателю для помещений: 1. Обогреватель должен быть пожаробезопасным, что обеспечивается надежными контактами и изоляцией, а также низкой температурой открытых частей обогревателя. 2. В режиме длительного включения температура внешних частей обогревателя не должна превышать 80—90 °С. 3. Нагревательные элементы обогревателя должны быть закрытого типа. 4. Обогреватель устанавливается с учетом противопожарных правил на расстоянии не менее 1,5 м от ближайших заземленных предметов. А. А. Гунякин (1991) приводит методику расчета ориентировочной мощности обогревателя с учетом теплопередачи всех поверхностей помещения для павильона объемом 8 м3 с хорошо утепленными стенами. Мощность постоянно включенного обогревателя без использования схемы терморегулирования составила 150 Вт, а при автоматическом терморегулировании — 300—400 Вт. В моей конструкции объем зимовального помещения составляет 11 м3, а в качестве обогревателя используется бытовой электроконвектор закрытого типа, имеющий возможность переключения мощности на 500 и 1 000 Вт. 3.4.2. ОБЩАЯ СХЕМА ТЕРМОРЕГУЛИРОВАНИЯ Разработка схемы терморегулирования заняла у меня довольно продолжительный промежуток времени. Вначале я, было, сделал попытку копирования широко известных в популярной литературе схем терморегулирования на транзисторах и реле. Однако испытания трех вариантов схем показали низкую надежность их работы. Но самое главное то, что используемые в этих схемах исполнительные элементы на реле обладают слишком широкой зоной нечувствительности. Это означает, что при «движении» по оси температур на повышение температур выключение реле происходит при одной температуре (t° ), а при обратном «движении» на понижение температур включение — при другой, Гвкл (см. рис. 3.33). Расстояние по оси температур между t*BMo) и t°Bioi (At°) и есть зона нечувствительности (по-другому — ширина петли гистерезиса). Слишком широкая петля гистерезиса у реле не поддается ни регулированию, ни устранению, поскольку этот недостаток носит конструктивный характер. А в итоге при использовании реле в схеме терморегулирования диапазон изменения (размах) регулируемой температуры будет слишком большим. Пример: релейная схема настроена на поддержание в улье температуры t°Bbllol = 5 °С. Для обычного реле ∆t° = 4 °С. Тогда Гт = t° – ∆t° = 5 – 4 = 1 °C. Следовательно, при нормальной работе такой схемы в улье температура будет колебаться в слишком широком диапазоне — от +1 °С до +5 °С. Для устранения этого недостатка была испытана схема на транзисторах с исполнительным элементом на тиристоре. Схема эта работала лучше, однако требуемая надежность и устойчивость еще не обеспечивались. Наконец была разработана схема терморегулятора на интегральной микросхеме и тиристоре. Испытания показали высокую надежность работы этой схемы. Несомненное достоинство схемы — возможность регулирования ширины температурной петли гистерезиса. Остановимся на подробном описании этой схемы (рис. 3.34). Работа схемы терморегулирования в режиме подогрева ульев В каждый улей под рамки помещается электроподогреватель. В один улей со средней по силе семьей непосредственно под подогревателем устанавливается термодатчик, которым является термосопротивление. На блоке терморегулирования устанавливается необходимая для поддержания температура, за которой будет автоматически следить блок терморегулирования. Если температура в улье превысит установленную на шкале температуру, то автоматически выключается напряжение на электроподогревателях, и температура в ульях начнет уменьшаться. При уменьшении температуры ниже установленной на 1—2 °С (в зависимости от выставленной в схеме ширины тепловой петли гистерезиса) автоматически включается подогрев, температура в ульях начнет повышаться и т.д. Контроль работы схемы электроподогрева, включения и выключения подогревателей осуществляется по светодиодам, установленным на панели блока и в каждом улье. При прокладке проводки к ульям надо учитывать, что при подключении светодиодов должна соблюдаться полярность. Кроме того, соединение подводящих проводов должно обязательно выполняться при помощи пайки (никаких скруток!). Непосредственное подключение подогревателя к проводке на улье можно делать при помощи заводских разъемов на ток не менее 1 А или при помощи вилки и розетки. Работа схемы терморегулирования в режиме обогрева помещения В помещении для обогрева, в зависимости от его объема, устанавливается электрообогреватель закрытого типа мощностью 500—1000 Вт. В районе размещения ульев устанавливается термодатчик. На блоке терморегулирования устанавливается необходимая для поддержания в помещении температура, за которой и будет следить схема терморегулирования. Для выравнивания температуры во всем объеме помещения и интенсификации воздухообмена в ульях в момент подачи напряжения на электрообогреватель автоматически включается вентилятор, собранный на маломощном двигателе. 3.4.3. ПРИНЦИПИАЛЬНЫЕ СХЕМЫ ОСНОВНЫХ ЭЛЕМЕНТОВ СХЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ Перейдем к описанию принципиальных схем основных элементов схемы терморегулирования (рис. 3.35—3.37). Силовой блок и блок питания для подогрева ульев В качестве силового трансформатора Т1 в схеме используется серийный накальный трансформатор типа ТН61-127/220-50К, но может использоваться и любой другой на мощность не менее 200 Вт (для 10-ти ульев). Напряжение вторичной обмотки должно соответствовать выбранному напряжению для подогрева. При этом надо иметь в виду следующее: Реально к подогревателям ЕК будет прикладываться напряжение на 1,5 В ниже расчетного за счет падения этого напряжения на открытом тиристоре V6. В моей схеме к подогревателю реально прикладывается напряжение 22,5 В. За счет естественного повышения величины сопротивления нагревательного элемента при его разогреве ток через подогреватель уменьшается. Реальный ток через один подогреватель ЕК составляет 0,7 А против 0,96 А по расчету. За счет этих двух причин реальная мощность подогревателя составляет 16 Вт против 23 Вт по расчету. Эти особенности работы схемы надо обязательно учитывать при расчете реальной мощности подогревателя. Если мощность изготовленного подогревателя окажется недостаточной, то ее можно увеличить или за счет увеличения питающего напряжения, снимаемого с трансформатора, или за счет уменьшения сопротивления (длины) нагревательного элемента. В нашем варианте для увеличения реальной мощности нагревателя до 20 Вт надо или увеличить снимаемое со вторичной обмотки питающее напряжение до 30 В (если такая возможность есть), или отрезать около 5 Ом сопротивления, измеренного на «холодной» проволоке. И еще одно замечание. Подогреватель обеспечивает заданную мощность при номинальном значении питающего напряжения сети в 220 В. Однако, по ряду причин, особенно в сельской местности, напряжение в сети может поддерживаться ниже номинала. В отдельных местностях напряжение сети бывает даже менее 200 В. Поэтому, если окажется, что не хватает мощности подогревателя, поиск причины надо начинать с измерения номинала питающего напряжения сети. В схеме в качестве выпрямителя используется мостовая схема на диодах V1—V4 типа КД 203Б. Однако могут использоваться и другие силовые диоды на ток 5—10 А. На транзисторе VT1 собрана схема стабилизации для питания микросхемы. Исполнительным элементом схемы терморегулирования является тиристор V6 типа КУ 202 с любым буквенным индексом от Г до Н. Диод V5 выполняет функцию развязки напряжения, прикладываемого к тиристору и подогревателям. Диод V5 может быть любого типа на ток не менее 0,1 А. Лампа Н1 и светодиоды V7, V8 используются для контроля работы схемы терморегулирования. Силовой блок для обогрева помещения Обогрев помещения производится от сети 220 В без трансформатора. Выпрямительный мост блока собран на силовых диодах V1—V4. Это могут быть любые диоды на ток 10 А с обратным напряжением не менее 300 В. Исполнительным элементом схемы является тиристор V7 типа КУ 202Н(М). В качестве нагревательного элемента можно использовать любые бытовые электрорадиаторы, электроконвекторы, электроплитки закрытого типа мощностью 500—1 000 Вт. Если температура поверхности нагревателя будет больше 80—90 °С, то эту поверхность надо накрыть толстым металлическим листом. Указанной мощности нагревателя достаточно для поддержания необходимой для зимовки температуры 5 ± 1 °С в помещении объемом до 10—12 м3 с теплыми (деревянными, из пенобетона, керамзита и т.д.) стенами и хорошо утепленным потолком. В помещении большего объема мощность нагревателя с данным силовым блоком можно увеличить, но не более чем до 2 кВт. При этом силовые диоды V1—V4 и особенно тиристор V7 должны находиться на вертикально расположенных металлических радиаторах площадью 40—50 см2 каждый. Светодиоды V5, V6 используются для контроля работы схемы. Если будет принято решение осуществлять автоматический обогрев только в помещении и не заниматься внутриульевым подогревом, то в этом случае надо будет изготовить только силовой блок для обогрева помещения и блок терморегулирования с отдельным блоком питания для него. Блок питания в этом случае изготавливается по аналогии с блоком питания для подогрева ульев. Но трансформатор Т1 может иметь мощность не более 5—10 Вт, вторичное напряжение 26—30 В. Диоды V1—V4 любые на ток не более 0,1 А. Силовой узел — тиристор V6, светодиоды V7, V8 и соответствующие сопротивления исключаются. Также исключается диод V5. Выходное напряжение этого блока питания выставляется подбором типа стабилитрона или цепочки стабилитронов в цепи базы транзистора VT1 и может составлять от 27 до 30 В. Может использоваться и любой другой блок питания со стабилизатором на соответствующее напряжение и ток не менее 0,1 А. Внимание! При сборке схемы терморегулирования для помещения надо иметь в виду, что все элементы силового блока будут находиться под опасным для жизни потенциалом 220 В. Под этим же потенциалом будут находиться и элементы блока терморегулирования. По этой причине все эти элементы должны быть надежно изолированы от корпусов этих блоков и недоступны для случайного прикосновения при работе. Блок терморегулирования Блок терморегулирования собран на микросхеме К553УД2. Термочувствительным элементом (термодатчиком) является термосопротивление R2 4,7 кОм типа ММТ-4, которое помещается в один из ульев над поверхностью подогревателя под низ рамок. При настройке схемы потенциометром R7 «Гистерезис» выставляется ширина температурной петли гистерезиса в 1,5-2 °С. Делается это так: вращается ручка потенциометра R3 «Температура» в одну сторону до срабатывания схемы. На шкале «Температура» отмечается точка 1 срабатывания (включения) схемы. Затем потенциометр R3 вращается в противоположную сторону и отмечается точка 2 обратного срабатывания (выключения) схемы. Расстояние между точками 1 и 2 в °С и есть ширина температурного гистерезиса. Регулировкой R7 добиваются, чтобы разница этих температур была не больше 1,5—2 °С. Потенциометром R1 «ток УЭ» выставляется ток управляющего электрода, при котором происходит надежное срабатывание (открытие тиристора). При этом надо проверить, будет ли при выставленном токе УЭ происходить закрытие тиристора. В моей схеме для тиристора КУ 202Л выставлен Iуэ = 8 мА. Подбором R1 выставляется значение выбранного температурного диапазона автоматического регулирования на шкалу «Температура», находящуюся на передней панели блока. При указанных на схеме значениях сопротивлений диапазон автоматического регулирования блока лежит в пределах от 0 до 50 °С. Градуирование шкалы «Температура» производится при помощи надежного термометра. Термодатчик R2 и термометр помещают в место с фиксируемой температурой на несколько минут. Необходимо иметь в виду, что тепловая инерционность термосопротивления в воздушной среде составляет не менее 120 секунд. Не меньшую инерционность имеет и термометр. Поэтому для надежного фиксирования температуры термосопротивление и термометр надо держать в среде с фиксируемой температурой не менее 8—10 минут. После этого вращением ручки потенциометра R3 добиваются выключения электроподогревателя ЕК и на шкале «Температура» делается соответствующая отметка. Температура, которую в это время показывает термометр, будет соответствовать сделанной на шкале отметке. Обращаю внимание на то, что шкала «Температура» должна градуироваться не на включение подогревателя, а на его выключение. Дело в том, что для одной и той же температуры, за счет тепловой петли гистерезиса, положение ручки на шкале «Температура» при включении и выключении подогревателя будет отличаться на 1,5—2 °С. Указанное выше регулирование блока означает, что при работающей схеме терморегулирования в улье будет поддерживаться температура не выше той, которая будет выставлена на шкале. В качестве фиксируемых температур можно пользоваться комнатной температурой, температурой над поверхностью хорошо прогретого электроподогревателя, температурой внутри холодильника, температурой тающего льда (0 °С) и др. В ходе эксплуатации аппаратуры градуирование шкалы «Температура» уточняется. Для возможности выбора можно порекомендовать также оригинальную схему регулятора температур, которая приведена в № 9 журнала «Пчеловодство» за 2005 год на стр. 44. Заканчивая рассмотрение вопроса, хочется дать совет тем, кто собирается изготовить комплект аппаратуры для терморегулирования: прежде чем начать изготовление, обязательно прочитайте ту часть приложения 3, в которой говорится о способах подключения нагрузок. И последнее. Обращаю внимание на то, что представленная схема терморегулирования может с успехом использоваться в быту и для других целей: регулирования температуры в инкубаторах, аквариумах и т.д.
У нас Вы можете купить ульи Дадана или Рута